An Efficient Route to Iodohydrin Using Polymer-supported Hypervalent Iodine(III) Reagent

Jiang Min CHEN^{1,2}, Lu Ling WU¹, Xian HUANG¹*

¹Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028 ²Department of Chemistry, Gannan Teachers' College, Ganzhou 341000

Abstract: Several iodohydrins are synthesized in fairly high yields by using polystyrene-supported phenyliodine(III)bis(trifluoroacetate).

Keywords: Polystyrene-supported phenyliodine(III)bis(trifluoroacetate), olefin, iodohydrins, iodohydroxylation.

Polymer-supported hypervalent iodine compounds are increasingly used in organic synthesis and in the pharmaceutical industries as environmentally friendly reagents with their versatile reactivity¹. Especially, polystyrene-supported phenyliodine (III) bis-(trifluoroacetate) was widely used as a mild and clean oxidant.

Iodohydrins are important organic intermediates, which could not be obtained by the direct treatment of alkenes with iodine in water². Contributions to solve this problem appeared in the recent literature³⁻⁶. Among them, the method using phenyliodine(III)bis-(trifluoroacetate) (BTI)/I₂ system in CH₃CN-H₂O has the advantages of mild reaction conditions and simple procedure⁶. But the by-product, *i.e.* iodobenzene is difficult to separate from the product. Herein, we report an improved synthesis of iodohydrins using polystyrene-supported phenyliodine(III)bis(trifluoroacetate). The resin could be regenerated and reused⁷.

The synthesis of iodohydrins was simply carried out by stirring a mixture of polystyrene-supported phenyliodine(III)bis(trifluoroacetate) (1.2 mmol) with iodine (0.6 mmol), and olefins (1.0 mmol) in CH_3CN-H_2O (4: 1, V/V) at room temperature overnight (**Scheme 1**). Iodohydrins were obtained in fairly high yields and the results are summarized in **Table 1**.

Scheme 1

^{*} E-mail: huangx@mail.hz.zj.cn

Entry	Olefins	Products	Yield (%) ^a
1	Cyclohexene	OH	80
2	Indene		85
3	α -Methyl styrene	H ₃ C I	7 6
		ОН За	:
4	Styrene	HO	93
		30	l
5	1-Octene		66
6	Ethyl, trans-crotonate		62
7	Indene	и ос ₂ н5 и 3f	84 ^b
		31)

Table 1 Synthesis of iodohydrins using polystyrene-supported phenyliodine(III)bis(trifluoroacetate)

a The yields are based on the olefins; b Using regenerated resin.

In conclusion, polystyrene-supported phenyliodine(III)bis(trifluoroacetate) shows good reactivity in the iodohydroxylation of olefins. After the reaction, the poly-(iodostyrene) can be recovered by simple filtration and the polystyrene-supported phenyliodine(III)bis(trifluoroacetate) can be regenerated and reused.

Acknowledgment

Project 20272050 supported by the National Natural Science Foundation of China.

References

- 1. H. Togo, K. Sakuratani, Synlett, 2002, 1966.
- 2. J. Rodriguez, J. P. Dulcere, Synthesis, 1993, 1177.
- 3. H. Masuda, K. Takase, M. Nishio, et al., J. Org. Chem., 1994, 59, 5550.
- G. Asensio, C. Andreu, C. Boix-Bernardini, *et al.*, *Org. Lett.*, **1999**, *1*, 2125.
 M. Smietana, V. Gouverneur, C. Mioskowski, *Tetrahedron Lett.*, **2000**, *41*, 193.
- 6. A. R. De Corso, B. Panunzi, M. Tingoli, Tetrahedron Lett., 2001, 42, 7245.
- 7. V. V. Zhdankin, P. J. Stang, Chem. Rev., 2002, 102, 2523.

Received 22 October, 2003